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ABSTRACT 

A novel 2SSS (2 Step Solid Selenization) CIGS (Cu, In, Ga, Se) thin film solar 

cell recipe was developed which can be a replacement to the conventional co-deposition 

process usually employed for large-scale manufacturing. The co-deposition procedure is 

faced with multiple problems such as selenium incorporation, effective gallium 

incorporation in the absorber. It is a 2-step proprietary procedure with better control over 

growth mechanisms and material utilization for the absorber layer for the CIGS thin film 

solar cells. It makes use of solid selenium source as preferred by manufacturers. Each 

step of the 2-step procedure was dealt with separately for stoichiometric analysis and 

interesting trade-offs between materials such as gallium, indium and selenium was found. 

Solar cells with this proprietary absorber were fabricated on soda lime glass substrates. 

Results of the solar cells made with the 2SSS process matched with that of the co-

deposition process with the quantum efficiencies near 80% of the co-deposition cells. 

These experiments are going to serve as the test bed for the pilot line that is intended to 

be installed at USF’s research campus soon. The finished solar cells were characterized. 

The scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-

ray diffraction (XRD) were some of the important tools during the analysis of 

stoichiometry and structural properties. The device performances were measured with the 

help of current-voltage (I-V) testing and quantum efficiency (QE) measurements. 
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CHAPTER 1  SEMICONDUCTOR PHYSICS 

1.1 Introduction 

Ever wondered about a source of energy that would last for 5 billion years from 

present? There is a source that would last this long; I doubt whether even life would exist 

then. But I am talking about solar energy. Sun is “cool” enough to let life exist on earth 

and also provide humans with energy to lead a pleasant life. All we human beings need to 

do is to extract this energy in the right way. Do you think it’s easy?? We can give it a try, 

which is what drove me to research on Solar cells. We boast of different industries being 

set up in the developed and developing countries each day, but do we ever think how are 

these industries going to be powered?  I feel only renewable energy sources are the 

future. To be frank I get scared when some people say if there is world war next it would 

be for energy acquirement. Energy requirements are serious issues and are of immediate 

concerns for any nation today. 

I feel solar power stands out from other renewable energy sources of because of 

its availability and accessibility. Large scale manufacturing is facing many challenges. 

Solar cells are used to convert energy from sun to electricity. This study deals with a 

specific type of solar cells called CIGS thin film solar cells. 
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1.2 Photovoltaics 

The science of converting solar energy to electrical energy is called photovoltaics. 

This effect was first reported by Edmund Bequerel in 1839 when he observed that the 

action of light on a silver coated platinum electrode immersed in electrolyte produced an 

electric current [1]. It was Charles Fritts who prepared the first large area solar cell by 

pressing a layer selenium between gold and another metal [1]. Later photovoltaic effects 

were found in compounds such as copper-oxide thin film structures, in lead sulphide and 

thallium sulphide [1]. As described above the initial solar cells were of thin film Schottky 

barrier where there was an asymmetric junction between metal layer and semiconductor. 

With the evolution of silicon electronics all these changed as there was the introduction 

of p-n junction. The p-n junctions provided much better rectifying actions compared to 

that of Schottky barriers and hence a better photovoltaic behavior. This led to the 

development of a silicon solar cell of 6% efficiency by Chapin, Fuller & Pearson in 1954. 

Later different p-n junction devices of gallium arsenide, indium phosphide and cadmium 

telluride were studied. The cost of such solar cells was a whopping $200 per watt. It was  

later in the 1990s, when the nations started experiencing oil shortages and were in search 

of different sources of energy that led to photovoltaic production expansion. Soon there 

was a noticeable 15-20% growth per annum in photovoltaic production which led to the 

cost reduction. Ways to lower costs were also eased by the finding of new amorphous, 

polycrystalline, thin film and organic conductors. Top CIGS thin film companies like 

Global solar, Nano-Solar now claim a cost of $1 or less per watt due to extensive 

development in the deposition techniques. 
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1.3 Physics Involved in Semiconductors and Solar Cells 

1.3.1 Semiconductors 

Semiconductors are materials whose conductivity lies between that of a metal and 

an insulator. They form a special category of materials in large part because of their 

electrical, optical and material characteristics. The band diagram of a semiconductor is as 

shown in the below Figure 1. The energy gap Eg between the valence band and the 

conduction band is not as big as in insulators or overlapping as in case of conductors. 

 
Figure 1 Energy band diagram of a semiconductor 

1.3.2 Doping 

Semiconductor in its purest form is called intrinsic. When a semiconductor is 

incorporated with certain impurities its crystal structure gets disturbed and exhibits 

interesting features. This process is called doping. The introduced impurities will have 

bonds of different strengths compared to that of a perfect crystal and hence will change 

the local distribution of the electron energy levels. Basically there are two types of 

impurities: donor impurity & acceptor impurity. When a semiconductor gets doped to 
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have an increased density of electrons compared to holes in them, it is called n-type 

doping and the impurity is called donor type, as it donates extra electrons. While an 

impurity which increases the density of positive charges compared to negative charges in 

a semiconductor is called acceptor impurity and the corresponding doping type is p-type. 

1.4 P-N Junction 

On doping a semiconductor with p-type and n-type there is an interface between 

them. This results in what is called the p-n junction. The junction is depicted in the Figure 

2. This region is depleted of both electrons and holes. There is a tendency of the holes 

from the p-type region to move towards the n-type region leaving behind ionized 

acceptor. Likewise the electrons from the n-type material move towards the p-type 

leaving behind ionized donors. The region comprising the ions form what is known as the 

space charge region as depicted in the Figure 2. Presence of charges on the two extremes 

gives rise to a built in potential as in Equation 1. 

)/ln(*/
2

iDAbi nNNqkTV 
 

Equation 1 Built in potential [1] 

The width of the space charge region is also decided by similar parameters and hence is 

given by 

2/12/1 )(*/))]((*)(2[ DADAbi NNqNNVVW  
 

Equation 2 Width of space charge region [1] 

where, 

NA is Acceptor impurity concentration on the p-side of the junction 

ND is Donor impurity concentration on the n-side of the junction 
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V is Applied voltage 

k is Boltzmann’s constant 

T is Temperature 

ni is Intrinsic carrier concentration 

 

 
Figure 2 Schematic of a p-n junction 

1.4.1 Biased P-N Junction 

The p-n junction can be biased by connecting it to an external power supply. If the 

p-n junction is connected in such way that the p-region is connected to positive terminal 

of the supply and n-region is connected to the negative terminal then it is forward biased. 

In such a case the electrons in the n-region and the holes from the region gain sufficient 

energy to crossover the lowered potential energy barrier. This results in the current flow 

across the junction. The current in the forward biased condition is due to the majority 

charge carriers and is called diffusion current .The current v/s voltage characteristics 

under forward biased condition is as shown in Figure 3. When the p-n junction’s p-region 

is connected to the negative terminal of the external power supply and the n-region is 

connected to the positive terminal it is said to be reverse biased. In such a case the 



www.manaraa.com

6 

 

majority carriers are attracted towards the power supply terminals and hence diffusion 

current becomes negligible. However due to the presence of electron-hole pairs generated 

due to thermal energy there will be small leakage current under reverse bias. The current 

flowing across the junction can be represented by the Equation 3. 

)1)/exp((  kTqVII SAT  

Equation 3 P-N junction current [1] 

where, 

ISAT = Saturation current 

 
Figure 3 I-V characteristics of a p-n junction [21] 

1.5 Heterojunction 

A junction formed by semiconductors with dissimilar energy band gaps is called 

heterojunction. Such devices are of extreme importance in optoelectronics. It is very 

important for a solar cell to consist of semiconductors of different energy band gaps so as 
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to match various parts of the solar spectrum. Let us consider a condition where a typical 

solar cell which consists of n-on-p heterojunction with the energy levels Eg1 and Eg2 

respectively with Eg1>Eg2. Now the light with energy less than Eg1 but greater than Eg2 

will be absorbed by the semiconductor layer at the bottom. So the n-type top layer acts as 

a window layer. Taking a look at the energy band diagram during the formation of 

heterojunction in Figure 4 we can notice there are discontinuities formed.  

 

 

Figure 4 Band diagram after the heterojunction formation [3] 

The formed discontinuities in the valence and conduction band serves as an 

initiation for the carrier flow in the solar cells under light. Difference in properties such 

as electron affinities can be the reason for such discontinuities. The discontinuities are 

given by  
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Equation 4 Discontinuity in conduction band 

)( 12 CggV EEEE 
 

Equation 5 Discontinuity in the valence band 

Vbi is the total built in potential which is a sum of electrostatic potentials Vb1 and Vb2 of 

the two semiconductors, while X1 and X2 are the respective affinities of the 

semiconductors. 

1.6 Solar Cells 

Solar cells are devices made of various n and p type semiconductors that convert 

light energy to electrical energy. Each of the semiconductors has different band gaps 

which enables it to match with different regions on the solar spectrum. When light is 

incident on a solar cell the light of energy less than that of the energy band gap of the 

semiconductor the corresponding layer absorbs it. Light consists of packets of photons, 

when these photons are absorbed they in turn generate what is called as EHP (Electron-

Hole Pair). The generated carriers can be driven  across the junction to an external circuit 

or load in the presence of an electric field to be collected at the contacts at the extreme 

ends of the device. Such a current is called the photocurrent. Hence it becomes very clear 

that selecting what semiconducting material makes the solar cell is a critical issue. This is 

because each material has different absorption coefficient. The Equation 6 gives the 

relation between incident intensity and absorption coefficient of a semiconductor. 

 

 

21 XXEC 
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)])([exp( tII O 
 

Equation 6 Photocurrent [2] 

where, 

IO = Intensity of light incident on the semiconductor 

α = Absorption coefficient 

λ =Wavelength of incident light 

t= Depth of material the light travels into from the surface of incidence 

1.6.1 Spectral Response 

It is very important to determine how a solar cell responds to different parts of the 

solar spectrum. Typically for a thin film CIGS solar cell we do a spectral response that 

ranges from wavelengths 400nm-1400nm of light in order to determine its quantum 

efficiency. Quantum efficiency QE (E) refers to the ability of an incident photon of 

energy E on the solar cell to deliver an electron to the external circuit. I would like to 

quote a very important equation of the rate of carriers generated which is given by 

xeRFXG )()](1)[()(),(    

Equation 7 Rate of photo generated carriers [2] 

where, 

x= distance from the semiconductor surface where EHPs’ are generated 

F (λ) = No. of incident photons /cm
2
/s/unit bandwidth 

R (λ) = Fraction of these photons reflected from surface 
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1.6.2 Equivalent Circuit of a Solar Cell 

 
Figure 5 Equivalent circuit of a solar cell [1] 

The equivalent circuit has a current source indicating IL which is the photocurrent. 

Basically the solar cell is a current generator in parallel with a non-linear resistive device 

like a diode [1]. This is because when the solar cell is being illuminated it generates a 

photocurrent which varies w.r.t the variable resistance of the diode and light intensity. 

The resistance Rsh arises due to leakage current through the cell at the edges of the 

devices and contacts of different polarity. The series Rs is a result of resistance of the cell 

material to the flow of current and also the resistive contacts [1]. 

1.6.3 Important Parameters of a Solar Cell 

Solar cell under illumination gives rise to photocurrent. In order to write an 

equation for the total current in a solar cell we take into account the voltage driven 

current and the light generated current. Hence the Equation 8 becomes 
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Lsat InkTqVII  )1)/exp((
 

Equation 8 Photocurrent under illumination [1] 

where, 

 n = diode ideality factor 

Under illumination the solar cell is said to be shorted and hence the short circuit 

current known ISC is same as IL. The ratio of ISC  over a particular cell area gives us the 

current density JSC .The voltage obtained by setting I=0 in Equation 8 gives us what is 

known as the open circuit voltage VOC of a solar cell. 

]1)/ln[(*)/( 
SAT

IIqkTV LOC   

Equation 9 Open circuit voltage [1] 

Now when at certain point of I-V when the power becomes maximum we define a very 

important parameter of a solar cell called as the fill factor (FF). 

)/()( SCOCMM JVIVFF 
 

Equation 10 Fill-factor [1] 

Hence now the efficiency of the solar cell will be given by, 

)/(** iSCOC PIVFF
 

Equation 11 Efficiency [1] 

where, 

Pi = input power 
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1.6.4 I-V Characteristics 

Current-voltage relationships of a solar cell in the dark and in the light are of 

importance. When there is no illumination the solar cell is said to be in dark. Even in this 

case there exists a very negligible current in the cell due to the minority charge carriers. 

However it is different under light as it is due to EHPs’ and called the photo-generated 

current. To give you an idea I show you the I-V curves of one of 2SSS CIGS co-

deposition cell sample SC32 that was made during the course of my research in Figure 6  

and Figure 7. It is to be noted in the I-V curves the current densities (J) are calculated by 

multiplying a factor of 10 to the currents (I) as the areas of our devices are 0.1 cm
2
. 

 

 

                                                                                                                                                                                                                                                                                
Figure 6 Current-voltage relation when solar cell is in the dark 
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Figure 7 Current-voltage relation when  solar cell is in the light 
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CHAPTER 2   CIGS THIN FILMS AND RESEARCH BACKGROUND 

In this chapter an overview of various technologies used in the Photovoltaic (PV) 

industry will be presented. Focus will be on CIGS thin film solar industry. Different 

efforts taken to commercialize and new trends in the CIGS industry also will be covered. 

As explained earlier our aim through the thesis work is to establish a method for the 

commercialization of the CIGS thin film solar cells.  

2.1 Why Thin Films? 

The word thin itself indicates less material goes into the making. Material 

utilization is one of the major problems the PV industry is facing when it comes to 

commercialization of ideas. Thin film solar cells are what many have resorted in order to 

tackle this issue. This makes it feasible for large-scale production. The deposition 

techniques involved allow the making of certain novel compound semiconductors which 

otherwise wouldn’t be possible [2]. The deposition techniques are flexible enough for the 

deposition to be on substrates such as glass, flexible substrates, polymer substrates etc. 

Certain electrical and optical properties that would not have existed in case of a same 

single crystal structure deposition becomes available [2]. A few of the very important 

deposition techniques for thin film includes thermal evaporation, sputtering, CVD 

(Chemical Vapor Deposition), ALD (Atomic Layer Deposition) etc. I would be 

discussing a few of these techniques in my next chapter as I tell about fabrication of my 
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solar cells. However the major disadvantage of a thin film solar cell being the high 

density of defects in their lattices compared to a single crystal structure [2]. 

The major requirement of thin film solar cells are that thickness of the active 

semiconductor film must be greater than that of the inverse of the absorption coefficient 

so that wavelengths at the higher end of the spectrum also can be absorbed [2]. Also the 

diffusion lengths must be larger than the film thickness in order to enhance the proper 

collection of the photo-generated carriers. 

Various materials based on the above specification have been decided suitable for 

the thin films. The major areas of research have been with amorphous silicon, CIGS 

(Copper-Indium-Gallium-Selenium) and CdTe (Cadmium telluride). Their theoretical 

limits to efficiency are as shown in Figure 8. 

 
Figure 8 Limits to efficiency for different thin film materials [8] 

I list below some of the major concerns that go into the selection of a material for 

thin film solar cells [2]. 

1. Direct band gap compatible for homo/hetero junctions 

2. High optical absorption coefficient 
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3. Possibility to produce p-type material for absorber and n-type for window layers. 

4. Good lattice match 

5. Good Electron affinities match with large band gap materials such as CdS so that low 

interface density states can be formed. 

The confirmed efficiencies of some of the thin film solar cells are as listed in the 

following Table 1.  

Table 1 Confirmed module terrestrial efficiencies measured under global AM1.5 

spectrum (1000 W/m
2
) at a cell temperature of 25 deg C (IEC 60904-3:2008 ASTM 

G-173-03 global) [9] 
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Figure 9 Best research solar cell efficiencies so far [9] 

Figure 9 indicates the efficiency levels of different PV technologies so far at the 

research level. It has always been a challenge to reproduce them at large-scale 

manufacturing level. Issues about the CIGS will be discussed in the upcoming sections.       

2.2 CIGS Thin Films 

Evolution of CIGS (Copper Cu, Indium In, Gallium Ga, and Selenium Se) was 

from CuInSe2 (CIS) thin films. CIGS belongs to chalcopyrite family. The CIS thin films 

were first to be studied in this family. CIS is a ternary compound with the energy band 

gap of about 1.0 eV. Such solar cells were fabricated with a structure having SLG (Soda 

Lime Glass)/Molybdenum layer (back contact)/CIS (Absorber)/CdS (Window)/ZnO 

(Front contact).CIS being the p-type and CdS being the n-type to form heterojunction. 
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The CIS chalcopyrite structure is a diamond lattice with FCC tetragonal unit cell and is as 

shown in Figure 10. 

 

 

Figure 10 Chalcopyrite structure of CIS [10] 

As mentioned the thin films are bound to have lattice defects, CIS had few of 

them. The major acceptor defects included that of Cu vacancies and Cu on In antisite 

defects. The major donor defects were that of In on Cu antisite defects and Se vacancies. 

During the course of CIS research by several people different things were dealt with, 

such as increasing the Copper level compared to Indium which made it more p-type 

conductive. This did not do any good as it led to the shorting of the junction due to 

excessive copper selenide formation. Such a problem could have been avoided by 

increasing the Indium level but this led to higher compensation effect. However CIS 
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yielded better efficiencies comparatively it had lower VOC s’[3]. This is when the idea of 

adding gallium to CIS came up and ultimately it evolved to CIGS [3]. The inclusion of 

gallium made it a quaternary semiconductor with a band gap of about 1.7eV. However 

the band gap variation for CuIn (1-x) Gax Se2 is represented by the Equation 12. 

)1(249.664.011.1 xxxEg 
 

Equation 12 Band gap variation in CIGS [3] 

 

The incorporation of Ga increases the adhesion to molybdenum and hence 

changes a lot with regards to the defect mechanisms and film morphology. The Ga 

variation in the absorber layer can be done and is referred to as Ga grading which 

ultimately leads to enhanced collection of carriers by building up better quasi-electric 

fields. The grading is the phenomenon where a predominant shift in conduction bands 

takes place. It is as shown in Figure 11. 

 
Figure 11 Band bending  a)Without grading  b)With grading [3] 
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2.3 Role of Sodium in CIGS 

Sodium is supplied from the SLG that we use as the substrate to make our solar 

cell. Sodium diffuses all the way through molybdenum from the glass and into the active 

semiconductor absorber. This changes several device properties such as conversion 

efficiencies [11], grain size, preferential orientation [12] and a reduced sensitivity of 

devices to the metal ratio [13]. 

Different models suggest mechanisms by which Na does this, they are: 

1. Zhang/ Wei/ Zunger defect pair model: This model suggests the Na replaces few of the 

Cu vacancies thus reducing the defect pair formations [14]. As a result of this the hole 

density is affected and hence the device produces better VOC s’ and FFs’. 

2. Na acts as a catalyst in passivation of the selenium vacancies by oxygen [16]. 

3. Neumann defect pair model: Na substitutes Cu in the lattice reducing the cation 

disorder due to which there is an increase in VOC s’ and FFs’ [15]. 

2.4 Commercialization Issues 

It was reported that the energy consumed in manufacturing in CIGS modules was 

11 MJ/Wp which was the lowest for any of the existing PV technology [21]. Though thin 

film CIGS research boasts of proven 20% efficiencies at the lab scale [5] it is yet to be 

highly commercialized on a large scale. Since my thesis deals with the vacuum 

deposition of CIGS I would be focusing the problems caused by this. Issues are mainly 

due to Selenium. Being a very volatile substance the problems due to Se are more than 

one. A CIGS Manufacturer is constantly faced with Se build up in the reactors. Hence 

there is a necessity of frequent cleanup which eats away the time to manufacture the 

modules. Also due to the fact that excessive Se is required to grow stoichiometric films 
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such a problem cannot be avoided as co-deposition is the major deposition technique 

used. Material properties of Se also play a considerable role in creating problems. 

Selenium has a very low sticking coefficient to the film growth surface [5] and also 

exhibits tendency to form chains and rings. Lot can be attributed to the kinetics and 

thermodynamics of the surface interactions. All these issues drive us to find a 

replacement to co-deposition technique. Thus was introduced the 2-step and 3-step CIGS. 

But even these methods have co-deposition as their deposition technique. It is important 

to remind the reader that in case of vacuum based CIGS a manufacturer always prefers 

metals being deposited first followed by their selenization due to the above discussed 

issues. Such issues form the basis of this thesis as we try to find a replacement for the co-

deposition technique and also use it for a large-scale purpose. This thesis will explain to 

you a recipe that is made keeping all these in mind. Not to forget to add the issues of 

material utilization and growth mechanisms which were also under consideration. 

2.5 Different Multi-Step CIGS Techniques Practiced in Vacuum Deposition 

In this section am going to introduce several selenization techniques in vacuum 

deposition of the CIGS absorber that have been already found in order to tackle the issues 

with Se. Some of them are, 

1. Selenization of stacks of metals and compound precursors [18]: A study conducted by 

F.B.Dejene to CIS (Copper-Indium-Selenium) and CIGS by selenization of stacks of 

metals and compound precursors by Se vapor [18]. In order to form the CuInSe2 absorber 

stacks of InSe /Cu/InSe were deposited on glass/Mo substrate at 200°C.Care was taken to 

see to that each of the precursors were deposited at identical conditions so that Mo had 

minimal influence on the films. In order to make Cu (In, Ga) Se2, the GaSe layers were 
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deposited at around 300°C. In the CIGS thin films it was noted to have the ratios Cu/ 

(In+Ga) ~ 0.9 where Ga/ (Ga+In) was varied based on the GaSe deposition. Once the 

precursor films were done it was reacted with elemental Se vapor at 550°C for 60min. 

Hence single phase Cu (In, Ga) Se2 was produced by varying the deposition temperature 

of GaSe at the precursor step. So this made it easy to have variations with the lattice 

parameters of the chalcopyrite structure by just varying the Ga incorporation. SEM 

studies during the research indicated the crystalline qualities of these thin films were 

influenced by the Ga concentration in the bulk of the film. Later depositions of 50nm 

thick CdS buffer layer, 50nm of highly resistive intrinsic ZnO layer followed by 500nm 

of highly doped n-type ZnO were made to make complete devices. Such devices gave 

VOCs’ in the range of 300-410mV, current densities Jscs’ in the range of 25-35 mA/cm2 

& fill factors (FFs’) between 40-60%. 

2. Sputtering and selenization [19]: The other method is where a novel absorber was 

made with the help of sputtering which was majorly used due to its uniformity over large 

area. The sputtering targets of Cu, In2Se3 and Ga2Se3 where used for this purpose. Two 

approaches were basically used to make quality CIGS films. In the first case initially a 

CIS layer without any spurious phases was selenized at a temperature of 520-530°C. On 

top of this a Ga2Se3 layer of .2-.4µmwas deposited to be finished of with a Cu layer on 

this. Later this film was selenized to form CIGS films. Smaller grain sizes and their 

tendency to coalesce were observed. Such devices on completion yielded VOCs’ of 520-

580mV,JSCs’ of 32-34mA/cm2  and fill factors of 70-72%.A second approach were 

layers of In2Se3 ,Ga2Se3 and Cu were sputtered onto Moly. The In2Se3 & Ga2Se3 

where deposited at a substrate temperature 350°C where as the Cu layer was sputtered at 
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450°C. Such a Cu layer is said to have helped in the mixing up of the layers. Later this 

film was selenized at 530°C to get CIGS films. 

2.6 New Trends 

Companies such as Centrotherm photovoltaic AG in Germany and Showa Shell in 

Japan tend use the technique similar to the one mentioned in section 2.5 for production of 

their modules [19]. NREL promotes the three stage co-evaporation and has recorded an 

efficiency of 19.4% w.r.t it [21]. This is the elemental evaporation from point sources. 

But this technique over a large area cells has its own disadvantages. They propose a 

copper rich film at the end of the second stage which aids grain growth resulting in better 

morphologies and devices. Energy photovoltaics Inc uses elemental Se for CIGS purpose 

which makes it less toxic as compared to the use of H2Se.They term their process as the 

hybrid process. In such a process an (InxGa1-x) 2Se3 layer was formed on heated substrate 

with In, Ga and Se. Then a Cu layer was stacked onto it then was selenized under a Se 

atmosphere. Later In, Ga and Se were supplied to finish as CIGS films. From different 

methods explained in this section and previous section we can see how important it is to 

have a control over different temperature profiles and growth mechanisms to have a 

control in order to produce quality CIGS. Not only this, efforts are also being made to 

find a better way to make the CdS layer onto the CIGS which completes the junction, 

ALD (Atomic Layer Deposition) is being suggested. Also reactive sputtering for the 

window layers of AlZnO are being suggested for better conductivity and IR transmission. 

Successful module fabrication with the CIGS thin films presently are faced with these 

key challenges [21]: 

1. Uniform CIGS layer over a large area. 



www.manaraa.com

24 

 

2. Process control and its reproducibility. 

3. A proper ZnO layer. 

4. Scribing processes. 

5. Interconnect resistance of ZnO/Mo interface. 

The above issues have been driving factors on our evolution of a novel process for CIGS 

absorber for large-scale manufacturing. Once the intended pilot line is at full operation at 

USF it would be appropriate to deal with the other layers and right now we are focusing 

on the absorber at the lab scale. 
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CHAPTER 3    DEVICE STRUCTURE AND FABRICATION 

In this section I am going to introduce to you the device structure of the solar cells 

I fabricated during the course of my thesis work, also different methodologies and 

deposition techniques used in the fabrication. 

3.1 Device Structure 

 

Figure 12 Device structure of the fabricated CIGS solar cell 

The order of deposition for the fabrication of the Novel 2SSS CIGS thin film solar cell 

included that of   

1. A bi-layer of Molybdenum as the back contact of 10kA° thickness by DC magnetron 

sputtering 

2. The proprietary CIGS absorber on the molybdenum of about 2-2.5µm thickness by 

thermal evaporation 
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3. Followed by a 500A° thick CdS layer by chemical bath deposition (CBD) as the 

window layer 

4. Then a 850A° thick intrinsic resistive ZnO layer by RF sputtering in the presence of 

Oxygen  

5. Followed by Aluminum doped ZnO of 1500A° thick as the front contact by RF 

sputtering. 

3.2 Fabrication 

3.2.1 Substrate Cleaning 

Two types of glass substrates were used during the course of this research work. 

The first type was corning 7059 glass of size 1.45” x 1.32” and 0.7mm thick was used for 

stoichiometric analysis of the novel absorber layer .This glass substrate was initially 

exposed running De-ionized(D.I) water , while it was brushed away using a dedicated 

brush used to clean substrates. Brushing was unidirectional and facing away from the 

glass so that the effects on the substrate due to cleaning remain constant throughout. This 

was done for about 45 seconds. Later the glass substrate was dropped into a Teflon 

beaker containing 10% diluted hydrofluoric (HF) acid for 5 seconds. Then the glass 

substrate was picked up from the beaker using Teflon tweezers and was exposed running 

D.I water to rinse off the HF for the next 25 seconds. After this in a quick succession of 3 

seconds the substrate was again dipped in HF and removed to rinse it off with D.I water. 

After about 45 seconds the substrate was blown dry using compressed nitrogen. The 

second type of glass substrate that I used was that of soda lime glass (SLG) which was 

used to make devices. SLG was cut into size using a glass cutter. Later was washed under 
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running D.I water and also brushed with normal soap. After complete rinse off under the 

D.I water, the glass pieces were then transferred to a holder in a beaker and then ultra-

sonicated with 2-propanol for 30 mins. Then the 2-propanol was thrown away and the 

glass pieces were rinsed off with D.I water .The beaker was then filled with D.I water and 

ultra-sonicated it for 30 mins. Then SLG was left in the D.I water inside the beaker and 

whenever it was necessary they were picked up and exposed to running D.I water and 

dried under a nitrogen blow before use. 

3.2.2 Molybdenum Deposition 

A bi-layer of Molybdenum was deposited so that the absorber sticks on better to 

it. Bi-layer refers to moly being deposited at two different pressures to get a high/low 

resistive layers, as it is proved the adhesion of moly was better when such a practice  was  

followed [3]. The first layer is deposited at a rate of 10A/s while the pressure inside the 

sputtering chamber being 5x10
-3

 Torr with DC power rating of 755W for 3 mins and 20 s. 

The second layer was deposited at a rate of 10A/s but at a pressure of 3x10
-3

 Torr inside 

the sputtering with a DC power rating of 755W for 13 mins and 14 s. Such a bi-layer acts 

as the back contact of the solar cell. 

3.2.3 Absorber Layer 

3.2.3.1 Bell Jar System 

The absorber layer was deposited in a Bell jar system which is a Physical Vapor 

deposition system. The bell jar can be pumped down to vacuum with the help of 

mechanical pump initially, i.e. to a pressure of 1x10
-2

 Torr and then with the turbo pump 
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to a pressure of 3x10
-6

 Torr  at which we deposit CIGS absorber layer. It has 4 effusion 

cells each for Copper, Indium, Gallium and Selenium. Each effusion cell has a designated 

crystal sensor which monitors the rate of flux in A°/s of the source material emanating 

from the liner encapsulated with the crucibles sitting inside the effusion cells. These 

effusion cells are heated up with power controllers. The temperatures to which the 

thermal guns are heated are noted on the monitor of the power controllers with the help of 

thermocouples connected to the bottom of each of the effusion cells. The Figure 13 below 

explains more about the system. 

 



www.manaraa.com

29 

 

 

Figure 13 Bell jar system 

It is also important to note the positioning of the effusion cells with regards to the 

substrate surface as shown in Figure 14. This is because we noticed certain variations in 

the device performance as the thickness of the absorber layer varied across the sample. 

This is discussed in detail in the results section. 
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Figure 14 Effusion cells positioning with respect to the substrate surface 

3.2.3.2 Thermal Evaporation Process 

The thermal evaporation process is where the source material is heated to a 

temperature where the atoms leave the surface of the source and travel in a straight path 

until they reach another surface. So now the positioning of the source and substrate 

becomes an important factor along with the temperature of operation. Once the atoms 

reach another surface it would not re-evaporate as the vapor pressure is different at this 

surface hence would adhere to the surface. The thickness of such a deposition depends on 

the geometry of the source-substrate placements, time of evaporation and also the 

temperature of heat up. 

3.2.3.3  Novel Absorber Layer 

The heart of my thesis lies in this novel absorber layer. It is this layer where all 

photonic activities take place in a solar cell. Different solar cell types are named based on 
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what goes into make this layer. We introduce to you a Novel approach to deposit this 

layer through this thesis. 

The deposition of our absorber layer takes place in two stages. We name our 

process as 2SSS (2 Step Solid Selenization) which employs evaporated Se (solid) as the 

source of selenium. The base case for this approach is that in which the metals are 

deposited sequentially followed by the selenization step. Variations include deposition of 

metal selenides and all permutations of the order of deposition followed by selenization. 

First, a CGS (Copper-Gallium-Selenium) layer is deposited at a substrate temperature of 

300°C.Though the sensor records a temperature of 300°C at the substrate it is believed to 

be typically 275°C at the substrate holder due to the spacing between the sample holder 

and substrate heater. So the initial layer is deposited for a time of 12.5 mins with fluxes 

of Cu@ 2A°/s, Ga@ 1.5A°/s and Se@15A°/s. It was noted the Cu/Ga ratio remained at 

the value of 1.2.Further details and the importance of these ratios are explained in the 

results section of the thesis. Once the CGS layer was finished depositing the metals 

where turned off with the Se left on while the substrate temperature was increased from 

300°C-525°C(500°C at the substrate).There was time gap of 7-7.5 minutes for the 

temperature to rise from 275°C to 500°C as we were using a potentiometer for heat up. 

During this time the Selenium was left on at the same rate in order to prevent any loss of 

Ga from the film as Ga2Se was a volatile substance. The second step is to deposit a CIGS 

(Copper-Indium-Gallium-Selenium) layer. Once the substrate temperature was 500°C, 

the metals Cu, Ga and In was turned on at 2A/s, 1A/s and 2.5A/s flux rates respectively 

with Se at 15A/s for the next 25 mins. Then the metals were turned off and the Se was 

turned low to 5A/s while the potentiometer was switched off. But it took around 19 mins 
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for the actual substrate temperature to drop from 500°C to 200°C, hence it is advisable 

for a cool down Se flux of 5A/s to be there in order to prevent In and Ga loss due to 

volatile species that were formed. This procedure explained is a more generalized one as 

there were few changes to it during the course of my thesis which will be explained better 

in the device results section. The substrate profile in Figure 15 shows the happenings 

during the absorber run. 

 

 
Figure 15 Substrate profile 

3.2.4 Chemical Bath Deposition (Window Layer) 

After the deposition of the absorber on Moly we move on to complete the CIGS 

junction by depositing the CdS (Cadmium Sulfide) layer of 300-500A° above it. The 

process we use to do so is called the chemical bath deposition (CBD). 

The procedure is as follows. CBD is a solution based deposition. The four 

solutions that go into the process are  

1. D.I water 
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2. Strong Ammonia solution: I used the solution from Fischer Scientific. 

3. Cadmium Acetate solution: 0.15M concentration of the same was made by dissolving 

2.766g of the cadmium acetate salt in  800 ml D.I (De-Ionized)water and stirring it to 

clear solution with a magnetic stirrer. 

4. Thiourea solution: 0.015M concentration of the same was made by dissolving 9.135g 

of thiourea salt in 800 ml D.I water and stirring it to clear solution with a magnetic stirrer. 

We opted for 600ml based CBD for the devices made. A dedicated beaker, 

thermometer, custom made sample holder and a magnetic stirrer was maintained for the 

CBD purpose. Once I finished the CIGS deposition, after the cool down of the bell jar 

system the sample was taken out and placed on the custom made sample holder and 

immersed in 406ml of DI water in the beaker in  which  there was a thermometer  and a 

magnetic stirrer already placed. The next step was to add 74.5 ml of strong ammonia 

solution and 59.6 ml of Cadmium acetate solution. This set up is then moved to a hotplate 

which was set to a predetermined heat level and speeds for the magnetic stirrer. When the 

mixture registered 30°C on the immersed thermometer, 59.6 ml of the .15M thiourea 

solution was poured into the beaker. The mixture was then heated to 80°C which is 

supposed to be the precipitation temperature. However when I was conducting the CBD 

process I found that the solution started turning yellow around 77°C, so I timed my run 

based on that. It is desirable to reduce the heat level on the hotplate once this temperature 

was reached so that the temperature of the mixture did not exceed 85°C. Based on my 

observations I made the depositions for around 3 minutes 5-15 seconds for all my devices 

before the mixture turned dark orange and precipitates formed. Once the deposition was 

finished the sample holder with the sample was picked up immediately and transferred to 



www.manaraa.com

34 

 

a clean beaker filled with D.I water and was allowed to cool down for about 2 

minutes.Then the sample was exposed to running D.I water in order to remove anything 

sticking on the surface of the film and then blown dry using compressed nitrogen. The 

Figure 16 below explains the set up. 

 
Figure 16 Chemical bath deposition apparatus 

3.2.5 i-Zinc Oxide Sputter Deposition (Buffer Layer) 

About 850A° of resistive intrinsic ZnO layer was deposited on the CdS layer 

using RF sputtering at a RF power of 175W. The substrate temperature was maintained at 

125°C. The oxygen level was at 10% w.r.t argon. The i-ZnO was hitting the substrate at a 

rate of 1A/s. 

3.2.6 AlZnO Sputter Deposition (Front Contact) 

Aluminum doped ZnO acts as the front contact for the devices. It was RF 

sputtered onto the i-ZnO layer with a mask placed on it. The mask had about 10 dots  of 

each area 1 cm
2
.About 1500A° of it was deposited at a rate of 1A/s with the RF power at 
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155W.The i-ZnO layer acts as the buffer layer which stops the Al from Al doped ZnO 

front contact from diffusing into the CdS layer and causing a short.  

3.3 Characterization 

3.3.1 Material Characterization 

Though we know what material we are depositing sometimes we need to know 

how pure it is, whether there is any contamination. Apart from this it becomes very 

important to keep track of the stoichiometry or composition of the films that we are 

making as we make ample changes to the recipe throughout the course of this thesis 

work. EDS was the handiest tool for this purpose. EDS was extensively used when 

depositions were made on just the corning glass for determining the kinetics and 

thermodynamics of the CGS and the CIGS thin films in order to know the trade-offs 

between different elements going on. Also once the device fabrication stage was reached 

we had a practice of performing the EDS on the cell to be made at the stage where CdS 

was just finished depositing. Moly on soda lime glass, novel absorber on top of it with the 

layer of CdS for the junction this was the stage where EDS was done to monitor different 

ratios. Usually after CdS the sample is believed to behave more stable as it protects the 

surface from contamination. EDS was done at the maximum point of 25keV in order to 

consider the fact that maximum penetration of the electrons was achieved as it was 

important to know the accurate composition of the film. In such a case the first half 

micron of the absorber which is very important as far CIGS is concerned is under 

measurement. 
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It is also important to mention that once the CGS and CIGS films were being 

made the XRD tool was also used to check the crystalline structure our absorber process 

was yielding otherwise of which the efforts to form a better process recipe would go in 

vain. Important results from XRD were found which are included in the results section. 

3.3.2 Device Characterization 

Once the solar cell was made it was subjected to an I-V test from which the 

response of the solar cell was found in the dark and the light.Corresponding plots have 

been explained and dealt with in the results section. Further a quantum efficiency test was 

also made on the solar cells. Necessary spectral response and transmission measurements 

were obtained from the spectrum analyzer. 
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CHAPTER 4   FILM GROWTH AND DEVICE RESULTS 

4.1 Idea Behind the Process Recipe for Absorber Layer 

Credit goes to around a decade’s research in my lab over CIGS for the idea of a 

favorable process recipe for the large-scale manufacturing of the CIGS thin films. As 

explained previously a multistep process in which materials are deposited in different 

times about the deposition cycle are preferred over the conventional co-deposition 

method [20]. 2 step process for the absorber are of great interest. The proprietary process 

involves selenization from solid state Se. It involves deposition of metals in all possible 

permutations followed by sequential selenization [5] .The basic idea behind the 2-step 

process of depositing a CGS layer first and then a CIGS layer on top is due to the fact 

that a Cu-rich environment CGS layer provides a feasible platform for the growth of 

CIGS with larger grain size in the finished film. 

4.2 Selenium Incorporation 

Many issues related to kinetics and the thermodynamics can be attributed to the 

selenium incorporation methods used during the CIGS formation. It is a major concern of 

any CIGS deposition to have an appropriate substrate temperature found to selenize the 

film in order to get the desired properties. Hence we had to find out what was the feasible 

substrate temperature at which our metal precursors had to be selenized in order to get the 

stoichiometric films. The research on the CIGS film would be meaningless without 
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figuring this out. Figure 17 indicates what we found out was desirable w.r.t to selenium 

incorporation in case of co-deposition. 

 
Figure 17 Selenium incorporated in co-deposited CIGS as a function of Se/metal 

flux ratio for two different substrate temperatures [5] 

This becomes very important as vacuum deposition involves use of excessive 

selenium to get stoichiometric films. Whereas in the 2 step process we are using two 

different temperatures one being low at 300°C another around 550°C. It was found that 

increase in temperature helped enhanced incorporation of Se in the films for co-

deposition. Such experiments were not done explicitly for the proprietary process used 

for 2-step depositions but other experiments were conducted to determine the selenization 

levels and are as explained in Figure 26. However the above data for single step or co-
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deposition process gives an idea how important the substrate temperature is for selenium 

incorporation. 

4.3 Novel 2SSS Film Kinetics and Thermodynamics 

It was very important for us to proceed in a step by step manner w.r.t finding out 

the right conditions for depositions of both the CGS layer and CIGS layer. This is 

because of certain material properties of the elements involved and their interesting inter-

dependence. I was told this was the first time we had all the elements Cu, In, Ga and Se 

in one vacuum chamber in order for deposition. Our initial aim was to have a data base of 

all the growth kinetics going on w.r.t the new method as compared to the old methods of 

precursor selenization. 

In order to do this we split the 2 steps separately and made a huge number of CGS 

and CIGS depositions with varied conditions to find a lot of things. I will explain these 

things in the coming sections. EDS was a very handy tool during this collection of the 

large amount of data. 

4.3.1 CGS Step 

The samples were made using the proprietary method on corning 7059 glass. 

Usually a deposition was made for 1000s at a substrate temperature of 300°C so that we 

could compare it to the 12.5 mins deposition that we intended to do in order to make 

devices. We had to also make sure the films were not very thin as the EDS would pick up 

the elements from the glass in such a case and would disturb our estimate of the proper 

stoichiometry. It was important for us to make co-deposition and also precursor 

selenization (PS) films in order to compare the results. It was also made sure that there 
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was equivalent quantity of Cu, Ga and Se being deposited in each case. Figure 19 shows 

what we found out. The targeted composition was Cu/Ga of about 1.2 [5]. The co-

deposited films attain the requisite Se of about 50%, but have Cu/Ga ratios of about 2.5 

which indicate a Ga loss of about 50%. Needless to say this is substantial and of concern 

at a manufacturing level. At the other end of the range the precursor films have 

incorporated entire incident Ga, but are substantially low in Se content. Increasing the Se 

flux for the PS films can and does raise the Se content level [5]. Clearly there appears to 

be a tradeoff between Se and Ga incorporation. The proprietary films play into this 

tradeoff, and as can be seen fill the range between the co-deposition and PS endpoints. 

Calculations indicate there is just 33% loss of Ga whereas there is 50% loss of Ga in the 

co-deposited films. In the lower Cu/Ga range the proprietary films can also preserve all 

of the Ga while incorporating 35% Se relative to 25% for the PS films. So in terms of 

effective Ga and Se utilization these films are superior to both co-deposition and PS 

films. Loss of Ga would be because of formation of volatile species such as Ga2Se.Our 

XRD results as shown in Figure 18 confirm that we are forming Cu2Se and Ga2Se3 which 

does indicate that we have Cu and Ga in our films. There is no unreacted metal that 

shows up in the XRD result. Our tentative conclusion at present is that some XRD peaks 

are dependent on film stoichiometry and growth induced microstructure [5]. Gabor 

reports changes in the γ-Ga2Se3 2θ=37°-38° peak which practically disappears when Cu 

levels exceed 24% in CIGS [24]. We intend to pursue this matter further since these 

uncharted compositions may prove to be useful precursor films [5].  A different 

mechanism is involved and we are dissuading ourselves from forming volatile species. 

Further a study for Se incorporation targeted at 50% was conducted and the following 
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results as shown in Figure 20 were obtained. It shows the effect of Se/metal flux level on 

film composition. Figure 20 shows that there is no loss of Ga over a range of metal flux 

ratios. 
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Figure 18 XRD  of the novel 2SSS CGS film 
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Figure 19 Se dependence on Cu/Ga for step 1 Cu rich 2SSS CGS films [5] 
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Figure 20 Atomic composition and Cu/Ga ratio as function of Se/metal flux for 

proprietary films [5] 

4.3.2 Penetrating into the Film with EDS at Different Voltages 

A study of 2SSS films and co-deposition films made with equal quantities of Se 

flux and deposition time was done. As shown in Figure 21 it was found that though the 

Cu/Ga ratio remains the same the selenization level was 27%. In order to get the desired 

ratio of near Cu/Ga =1.2 we had to further selenize the 2SSS film in Se flux for 30 mins 

at a substrate temperature of 300°C. This means additional Se flux and also Ga loss 

which is why Cu/Ga increases, the reason being more Se required to penetrate through 

the pre-cursor layers to fully selenize them. This fosters the condition to form volatile 

species. We developed a modified 2SSS process to overcome this problem.  
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Figure 21 shows the comparison between standard 2SSS and modified 2SSS process with 

that of the co-deposition films.  

 
Figure 21 Cu/Ga variation in 2SSS and co-deposition films [6] 

Selenization profiles of such films were obtained when different EDS beam 

voltages where used on them. A change in Se composition was observed. Care was taken 

to maintain the composition of the CGS film by our novel process is same as the one of 

co-deposition, which made us find the modified 2SSS process. One of the main reasons 

for this was the tendency of Ga to flow backwards in the film. Hence EDS measurements 

for each of the co-deposition, 2SSS process and modified 2SSS processes samples were 

taken at 15kV, 20kV and 25kV respectively. It is to be noted that at low beam voltages 

the ratios were manually computed by taking the peak amplitudes as the EDS algorithm 

may not give accurate atomic ratios. Figure 23, Figure 24 and Figure 25 just shows how 
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atomic ratios varied under EDS at different beam voltages. This can be compared to 

depth profiling of thin film .Whatever was the effect on the films our goal was to achieve 

a composition similar to co-deposition. So you can see from the plot below we were able 

to achieve this with our modified 2SSS process. 

 

Figure 22 Se/metal ratio as a function of EDS beam voltage for CGS films made by 

co-deposition, 2SSS and modified 2SSS process [6] 
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Figure 23 EDS on co-deposition CGS sample at 15kV 
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Figure 24 EDS on co-deposition CGS sample at 20kV 
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Figure 25 EDS on co-deposition CGS sample at 25kV 
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4.3.3 CIGS Step 

After finding things in the first step we move onto the second step where we also 

introduce Indium into the film. Similar results were found, as even In has the tendency to 

form volatile species. Plot for Cu/Ga and Cu/In for different samples are as shown in the 

Figure 26. It is Cu/In and Cu/Ga variation as a function of Se content in 2step-2SSS 

CIGS films. An interdependency between Cu/In and Cu/Ga with selenization level was 

found but however we were able to produce films with full selenization without the loss 

of group III elements. The selenization percentage varied between 45-57% as shown in 

Figure 26. After proper analysis we find that the desirable stoichiometric ratios are 0.9  

Cu/ (In+Ga)  1 and 0.2Ga/ (Ga+In)  0.3. 
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Figure 26 Cu/In and Cu/Ga ratio as a function of Se content in the 2 step 2SSS 

CIGS films [6] 

4.4 Device Results 

4.4.1 Few Changes to Process Recipe 

There were changes to the process recipe of absorber made because of certain 

surface issues we were facing as we went into making devices on the whole (Solar 

cells).The changes included were 

1. Raised the substrate temperature for the CIGS step to 550°C.This increased the 

reaction rates. This also helps the CGS layer to be in molten state and enhances the grain 

growth. 

 

 



www.manaraa.com

52 

 

 2. Cu cut-off at the end of the CIGS step:  Such a step was done to get the Cu/III ratio to 

desired ratio i.e. between 0.9-1.0. 

3. We let Se source on for an extra 10 mins at the end of the CIGS step because the 

metals deposited at the end of the run required some more time to be selenized. 

4.4.2 Thickness Variation 

During the course of the research we had to replace several of the effusion cells 

partially and completely due to different reasons of shorting, meltdowns etc., during 

which the orientation of the thermal guns might have been changed. As explained in 

section 3.2.3.1  the positions of these point sources are important. However this gave rise 

to a thickness variation of the absorber layer w.r.t the positions of the thermal guns .In 

order to keep track of these thickness variations depositions were made on 7059 corning 

glass which was taped with a special polymer tape for the Dektek measurements. Similar 

15 spots were measured on each elemental deposition made on the 7059 glass. Since the 

measurement of Ga and In variations cannot be observed with them individually over the 

glass sample, they were deposited along with copper. It is represented in the following 

plot in Figure 27. 
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Figure 27 Thickness variation across the sample due to effusion cell orientations 

These thickness variations were kept in mind when devices were being made so 

as to correlate our EDS data and device results (such as Voc, Jsc and FF) at various points 

on our solar cell device. 

I would like to cite an example of how things were correlated actually. The EDS 

was measured across opposite diagonals of the sample which consisted total of 5 points 

on the sample after the CdS layer was deposited. We can also see how the parameters 

Voc, Jsc and FF varied across the sample. The mask before depositing AlZnO was placed 

at an angle of 90º to the sample. To give the reader an idea, the comparisons of the results 

of a device SC32 as in Figure 28 shows this. The part A) explains the points where EDS 

was measured, B) gives the Cu/III ratio and Ga/III ratio of the device made w.r.t the 

positions of the effusion cells in the bell jar system and C) gives the device results. 
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Figure 28 Variations in the parameters of the device due to thickness variations 

4.4.3 Co-Deposition Device Results 

4.4.3.1 Device SC9  

This device was made with absorber layer recipe as mentioned in section 3.2.3.3 

with the only change being the substrate temperature was 550°C and not 525°C. This is 

for the reason explained in section 4.4.1. It is to be noted in the I-V curves the current 

densities (J) are calculated by multiplying a factor of 10 to the currents (I) as the areas of 

our devices are 0.1 cm
2
. 



www.manaraa.com

55 

 

4.4.3.2  I-V Results for Device SC9 

 
 

Figure 29 Dark  I-V for device SC9 

 
 

Figure 30 Light I-V for device SC9 

The dark current-voltage results indicate problems with the contacts. This co-

deposition device had a front contact AlZnO deposited with the substrate not being 

heated to 125°C, which meant there was no proper diffusion of aluminum in ZnO. The 

light I-V indicated there could be another junction being formed and hence we had to 
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calibrate our CdS layer better. Such changes were made and the next set of co-deposition 

devices was made. 

4.4.3.3 Device SC32  

This is a co-deposition device made with changes 1, 2 and 3 as mentioned in the 

section 4.4.1. It was very important to do the Cu cut-off at the end of CIGS step because 

this step ensured we got desired Cu/III ratio though it almost mimicked a 3-step process. 

The device results also improved compared to earlier devices such as SC9 as substrate 

was being heated during the front contact deposition and also the chemical bath 

deposition of CdS layer was better monitored now. 
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4.4.3.4 I-V Results for Device SC32 

 

 
 

Figure 31 Dark I-V for device SC32 

 

 
 

Figure 32 Light I-V for device SC32 
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4.5 Proprietary 2SSS Device Results 

4.5.1 Device SC34  

The process of making devices with novel process was started of initially with the 

process being used only in the CGS step of device making whereas the CIGS step was 

still a co-deposition process. We call these devices as the hybrid devices.SC34 is such a 

device where 2SSS process was used in the CGS step and CIGS step was a co-deposition. 

However all the changes to the process recipe in section 4.4.1 were still maintained as 

these had an impact on the device irrespective of whether co-deposition or 2SSS process 

were used. 

4.5.1.1 I-V Results for Device SC34 

 
Figure 33 Dark I-V for device SC34 
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Figure 34 Light I-V for device SC34 

On making comparisons with the reference co-deposition devices it was observed 

that the co-deposition devices had Vocs’ in the range of lower 500mV and Jscs’ near 

30mA/cm
2
. However the devices made with the novel 2SSS process had similar range of 

Vocs’, the Jscs’ in a lower 30mA/cm
2 

range. This was interesting to take note of because 

though we were able to match the compositional and micro-structural properties of co-

deposition there was something else going on with the devices made with 2SSS process. 

We sense this is something to do with the transport properties of the absorber considering 

the nature of our 2SSS process. It is to be noted that very minute differences in the point-

defect level can have a large impact on the device performance. A proper measure of 

such properties would be through quantum efficiency (QE) measurements. So we proceed 

to do QE measurements, the results are discussed in the upcoming section. 
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4.6 Quantum Efficiency Measurements 

With the issue of lower Jscs’ observed with the hybrid 2SSS devices it was 

necessary to make a comparison of its QE with that of co-deposition devices. The 

following Figure 35 gives the comparison of 2SSS device QEs’ v/s co-deposition QEs’. 

 

Figure 35 Quantum efficiency comparisons [6] 

Overall it can be seen that quantum efficiencies of the hybrid devices was almost 

80% of that of co-deposition QEs’ made with the same conditions. However there can be 

seen higher quantum efficiency in the blue region of the spectrum by the 2SSS devices. 

The additional QE in the red region is attributed the band gap of the 2SSS films being 

lower comparatively to the co-deposition devices. This is surprising to have been 

exhibited by a device which is still largely deposited by co-deposition process in the 
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CIGS step. Such observations might be as a result of less Ga being supplied to the space 

charge layer from the underlying CGS layer that is being deposited by 2SSS process. 

Further study of such complex mechanisms exhibited by Ga can lead us to making 

devices with excellent performances. 
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CHAPTER 5  CONCLUSIONS AND RECOMMENDATIONS  

The newly found 2SSS process for the CIGS absorber can be successfully 

implemented for the large-scale manufacturing as there are fewer issues of selenium for 

the manufacturer. Though devices with results comparable to co-deposition were 

fabricated, better results can be achieved with controlled CdS deposition and tweaking up 

of the ZnO layers. The hybrid devices results obtained promises an excellent future for 

2SSS process in the large-scale manufacturing level compared to co-deposition process 

overcoming the problems of improper selenium and gallium incorporation. 

During the course of making devices one of the major problems that I faced 

included that of effusion cell failures. This led to change in their orientation and made it 

difficult for the composition of the absorber layer to be maintained. The procedure of 

maintaining the effusion cells having metals at a higher temperature compared to 

selenium when it is in use becomes very important so that there is no deposition of Se 

onto the thermal guns. Frequent sandblasting of the shields of the effusion cells is 

necessary so that metal-Se compounds formed sticking onto the surface do not diffuse 

through the copper turnings at the base and onto the heater leads and thermo-couple 

leads. A frequent check on the mechanical pump oil is a must as Se vapors tend to get 

into it and stop them from normal operation. 
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I would also recommend a proper calibration of CdS layer can be achieved with 

the sample being picked up from the reaction solution right before the precipitates are 

formed. This is quite tricky and requires proper understanding of the color change of the 

solution at the end of the chemical bath deposition (CBD) procedures. I would also 

suggest the solutions made for the CBD must be quite accurate in their concentrations 

and can be achieved by weighing near accurate quantities of respective salts on the 

chemical balance. 

It is preferable to get done with the CdS layer by CBD on the very same day as 

absorber layer was deposited, as variations in the compositions of the absorber layers 

were observed when this was not done. It is better to have the sample inside the chamber 

under vacuum after the absorber layer deposition was finished and taken out just before 

the CBD was ready to go. 

The 2SSS process device results are promising and it is believed devices with 

better uniformity and hence better throughput can be achieved with further study of a few 

complex mechanisms involved. With devices made with 2SSS process made at the CGS 

step it is necessary to carry on with this to the CIGS step to make even better comparison 

with the co-deposition results. 
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